Detecting protein-protein interactions with CFP-YFP FRET by acceptor photobleaching.

نویسندگان

  • Tatiana Karpova
  • James G McNally
چکیده

FRET is a light microscopy method for detecting protein-protein interactions within intact cells. The FRET protocol presented here is for CFP- and YFP-tagged proteins examined with an argon laser on a scanning confocal microscope. FRET is assayed by one of the most straightforward approaches available, namely, acceptor photobleaching. In this procedure, the YFP-tagged protein (the FRET "acceptor") is photobleached at a cellular site of interest, and then the intensity of the CFP-tagged protein (the FRET "donor") at that same site is measured. In principle, FRET is detected when the CFP intensity increases after the photobleaching of YFP. This unit describes the appropriate steps to perform this measurement, as well as the necessary controls to ensure that an increase in CFP intensity, if detected, in fact reflects bona fide FRET. Successful application of the protocol will support the conclusion that the CFP- and YFP-tagged proteins directly interact at the site of the photobleaching.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APPL Proteins FRET at the BAR: Direct Observation of APPL1 and APPL2 BAR Domain-Mediated Interactions on Cell Membranes Using FRET Microscopy

BACKGROUND Human APPL1 and APPL2 are homologous RAB5 effectors whose binding partners include a diverse set of transmembrane receptors, signaling proteins, and phosphoinositides. APPL proteins associate dynamically with endosomal membranes and are proposed to function in endosome-mediated signaling pathways linking the cell surface to the cell nucleus. APPL proteins contain an N-terminal Bin/Am...

متن کامل

Sensitive Detection of p65 Homodimers Using Red-Shifted and Fluorescent Protein-Based FRET Couples

BACKGROUND Fluorescence Resonance Energy Transfer (FRET) between the green fluorescent protein (GFP) variants CFP and YFP is widely used for the detection of protein-protein interactions. Nowadays, several monomeric red-shifted fluorescent proteins are available that potentially improve the efficiency of FRET. METHODOLOGY/PRINCIPAL FINDINGS To allow side-by-side comparison of several fluoresc...

متن کامل

Quantifying the influence of yellow fluorescent protein photoconversion on acceptor photobleaching-based fluorescence resonance energy transfer measurements.

Fluorescence resonance energy transfer (FRET) efficiency measurements based on acceptor photobleaching of yellow fluorescent protein (YFP) are affected by the fact that bleaching of YFP produces a fluorescent species that is detectable in cyan fluorescent protein (CFP) image channels. The presented quantitative measurement of this conversion makes it possible to correct the obtained FRET signal...

متن کامل

Fixation, mounting and sealing with nail polish of cell specimens lead to incorrect FRET measurements using acceptor photobleaching.

Fluorescence resonance energy transfer (FRET) is a technique used for the study of functional interactions between molecules. The intimate vicinity between two fluorescent molecules (FRET-pair; donor and acceptor) allows for an energy transfer, which can be directly calculated as the so called FRET efficiency. This technique is used in fixed as well as living cells. Here we show first, measured...

متن کامل

Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.

Fluorescence resonance energy transfer (FRET) is an extremely effective tool to detect molecular interaction at suboptical resolutions. One of the techniques for measuring FRET is acceptor photobleaching: the increase in donor fluorescence after complete acceptor photobleaching is a measure of the FRET efficiency. However, in wide-field microscopy, complete acceptor photobleaching is difficult ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current protocols in cytometry

دوره Chapter 12  شماره 

صفحات  -

تاریخ انتشار 2006